

Probability and Statistics

Lecture 04

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

- Discrete Random Variables.
- Probability Mass Functions.
- Cumulative Distribution Functions.
- Discrete R.V. (Mean and Variance).
- Continuous Random Variables.
- Probability Density Functions.
- Continuous R.V. (Mean and Variance).
- Joint Probability Distributions.

Random Variable

• Is a function that assigns a real number to each outcome in the sample space of random experiment. Denoted by an uppercase letter such as *X*

A Discrete Random Variable

- Is a random variable with a finite (or countable infinite) range.
- The possible values of X may be listed as x_1, x_2, \ldots

• Flipping a coin of two times. Let X is the number of heads.

• Flipping a coin of two times. Let X is the number of heads.

Answer:

$$S = \{HH, HT, TH, TT\}$$

$$2 \quad 1 \quad 1 \quad 0$$

$$x = 0, 1, 2$$

 $P(0) = \frac{1}{4}, \qquad P(1) = \frac{2}{4}, \qquad P(2) = \frac{1}{4}$

Probability Mass Fun. (1/14)

Probability Mass Function

For a discrete random variable X with possible values $x_1, x_2, ..., x_n$, a **probability** mass function is a function such that

(1)
$$f(x_i) \ge 0$$

(2) $\sum_{i=1}^{n} f(x_i) = 1$
(3) $f(x_i) = P(X = x_i)$

x_i	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5
$f(x_i) = P(x_i)$	$P(x_1)$	$P(x_2)$	$P(x_3)$	$P(x_4)$	$P(x_5)$

Probability Mass Fun. (2/14)

Example1

Verify that the function is a probability mass function:

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Probability Mass Fun. (3/14)

Example1

Verify that the function is a probability mass function:

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Answer:

$$\sum P(x_i) = 1, \qquad P(x_i) \ge 0$$

Probability Mass Fun. (4/14)

Example2

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Find:

a. $P(X \le 2)$ b. P(X > -2)c. $P(-1 \le X \le 1)$ d. $P(X \le -1 \text{ or } X = 2)$

Probability Mass Fun. (5/14)

Example2

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Answer:

- a. $P(X \le 2) = 1$
- b. $P(X > -2) = \frac{7}{8}$
- c. $P(-1 \le X \le 1) = \frac{6}{8}$

d.
$$P(X \le -1 \text{ or } X = 2) = \frac{3}{8} + \frac{1}{8} = \frac{4}{8}$$

Two balls are drawn in succession without replacement from a box containing 4 red balls and 3 black balls. The possible outcomes and the values y of the random variable Y, where y is the number of red balls, are

Sample Space	\boldsymbol{y}
RR	2
RB	1
BR	1
BB	0

كلية الحاسبات والذكاء الإصطناعي

Probability Mass Fun. (7/14)

Example3	Sample Space	y
	RR	2
	RB	1
No Pod Palls	BR	1
	BB	0

$$f(0) = P(Y = 0) = \frac{\binom{4}{0}\binom{3}{2}}{\binom{7}{2}} = \frac{3}{21} = \frac{1}{7}$$

كلية الحاسبات والذكاء الإصطناعي

Probability Mass Fun. (7/14)

Exa	imple3	Sample Space	\boldsymbol{y}
		RR	2
	One Red Ball	RB	1
	One ned ball	BR	1
		BB	0

$$\int f(1) = P(Y = 1) = \frac{\binom{4}{1}\binom{3}{1}}{\binom{7}{2}} = \frac{12}{21} = \frac{4}{7}$$

كلية الحاسبات والذكاء الإصطناعي

Probability Mass Fun. (7/14)

Exa	ample3	Sample Space	\boldsymbol{y}
		RR	2
	Two Red Balls	RB	1
		BR	1
		BB	0

$$f(2) = P(Y = 2) = \frac{\binom{4}{2}\binom{3}{0}}{\binom{7}{2}} = \frac{6}{21} = \frac{2}{7}$$

Probability Mass Fun. (7/14)

Sample Space	y
RR	2
RB	1
BR	1
BB	0

у	0	1	2
f(y) = P(Y = y)	1/7	4/7	2/7

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

Note: Let X be a random variable whose values x are the possible numbers of defective computers purchased by the school.

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

Note: Let X be a random variable whose values x are the possible numbers of defective computers purchased by the school. Then x can only take the numbers 0, 1, and 2.

$$f(0) = P(X = 0) = \frac{\binom{3}{0}\binom{17}{2}}{\binom{20}{2}} = \frac{136}{190}$$

$$f(1) = P(X = 1) = \frac{\binom{3}{1}\binom{17}{1}}{\binom{20}{2}} = \frac{51}{190}$$

$$f(2) = P(X = 2) = \frac{\binom{3}{2}\binom{17}{0}}{\binom{20}{2}} = \frac{3}{190}$$

x	0	1	2
f(x) = P(X = x)	136/190	51/190	3/190

There is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0, 1, 2, 3, 4\}$.

Suppose that the probabilities are

P(X = 0) = 0.6561 P(X = 1) = 0.2916P(X = 2) = 0.0486 P(X = 3) = 0.0036P(X = 4) = 0.0001

Example5
$$P(X = 0) = 0.6561$$
 $P(X = 1) = 0.2916$
 $P(X = 2) = 0.0486$ $P(X = 3) = 0.0036$
 $P(X = 4) = 0.0001$

Cumulative Distribution (1/9)

The cumulative distribution function (cdf), denoted by F(x), measures the probability that the random variable X assumes a value less than or equal to x, that is,

Cumulative Distribution (2/9)

If *X* is discrete, then

 $F(x) = P(X \le x) = \sum f(x_i)$ $\overline{x_i \leq x}$

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Cumulative Distribution (3/9)

If *X* is discrete, then

 $F(x) = P(X \le x) = \sum f(x_i)$ $\overline{x_i \leq x}$

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8
$F(x) = P(X \le x)$	1/8	3/8	5/8	7/8	8/8

Cumulative Distribution (4/9)

$$P(X = 0) = 0.6561 \quad P(X = 1) = 0.2916$$
$$P(X = 2) = 0.0486 \quad P(X = 3) = 0.0036$$
$$P(X = 4) = 0.0001$$

x	0	1	2	3	4
f(x) = P(X = x)	0.6561	0.2916	0.0486	0.0036	0.0001

Cumulative Distribution (5/9)

$$P(X = 0) = 0.6561 \quad P(X = 1) = 0.2916$$
$$P(X = 2) = 0.0486 \quad P(X = 3) = 0.0036$$
$$P(X = 4) = 0.0001$$

x	0	1	2	3	4
f(x) = P(X = x)	0.6561	0.2916	0.0486	0.0036	0.0001
$F(x) = P(X \le x)$	0.6561	0.9477	0.9963	0.9999	1

Cumulative Distribution (6/9)

x	0	1	2	3	4
f(x) = P(X = x)	0.6561	0.2916	0.0486	0.0036	0.0001
$F(x) = P(X \le x)$	0.6561	0.9477	0.9963	0.9999	1

$$F(x) = \begin{cases} 0 & x < 0\\ 0.6561 & 0 \le x < 1\\ 0.9477 & 1 \le x < 2\\ 0.9963 & 2 \le x < 3\\ 0.99999 & 3 \le x < 4\\ 1 & 4 \le x \end{cases}$$

Cumulative Distribution (7/9)

Example2

x	0	1	2	3	4
f(x) = P(X = x)	1/16	4/16	6/16	4/16	1/16

Probability mass function plot.

Cumulative Distribution (8/9)

x	0	1	2	3	4
f(x) = P(X = x)	1/16	4/16	6/16	4/16	1/16
$F(x) = P(X \le x)$	1/16	5/16	11/16	15/16	16/16

Cumulative Distribution (9/9)

Discrete cumulative distribution function.

Mean and Variance (1/15)

Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and the variance is a measure of the dispersion, or variability in the distribution.

Mean and Variance (2/15)

Mean and Variance (3/15)

Mean and Variance (4/15)

Mean, Variance, and Standard deviation

The mean or expected value of the discrete random variable X, denoted as μ or E(X), is

$$\mu = E(X) = \sum_{x} xf(x)$$

The variance of X, denoted as σ^2 or V(X), is

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_x (x - \mu)^2 f(x) = \sum_x x^2 f(x) - \mu^2$$

indexidentiation of X is $\sigma = \sqrt{\sigma^2}$.

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Mean and Variance (5/15)

Example1

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Find:

Determine the mean and variance of the random variable *X*

Mean and Variance (6/15)

Example1

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Find:

Determine the mean and variance of the random variable *X*

Answer: (1/2)

E(X) =

$$\sum x_i P(x_i) = (-2) \left(\frac{1}{8}\right) + (-1) \left(\frac{2}{8}\right) + (0) \left(\frac{2}{8}\right) + (1) \left(\frac{2}{8}\right) + (2) \left(\frac{1}{8}\right) = 0$$

Mean and Variance (6/15)

Example1

x	-2	-1	0	1	2
f(x) = P(X = x)	1/8	2/8	2/8	2/8	1/8

Answer: (2/2)

$$V(X) = E(X^{2}) - (E(X))^{2}$$
$$E(X) = 0$$

$$E(X^2)$$

$$= \sum x_i^2 P(x_i) = (4) \left(\frac{1}{8}\right) + (1) \left(\frac{2}{8}\right) + (0) \left(\frac{2}{8}\right) + (1) \left(\frac{2}{8}\right) + (4) \left(\frac{1}{8}\right) = 1.5$$

$$V(X) = 1.5 - (0)^2 = 1.5, \qquad \text{Standard Deviation } (\sigma) = \sqrt{1.5}$$

Example2:

Example2 – Answer (1/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Let X represent the number of good components in the sample. Then x can only take the numbers 0, 1, 2 and 3.

Example2 – Answer (2/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

The probability distribution of *X* is

$$f(x) = \frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}},$$

$$x = 0, 1, 2, 3.$$

Example2 – Answer (3/9)

$$f(0) = P(X = 0) = \frac{\binom{4}{0}\binom{3}{3}}{\binom{7}{3}} = \frac{1}{35}$$

Example2 – Answer (4/9)

$$f(1) = P(X = 1) = \frac{\binom{4}{1}\binom{3}{2}}{\binom{7}{3}} = \frac{12}{35}$$

Example2 – Answer (5/9)

$$f(2) = P(X = 2) = \frac{\binom{4}{2}\binom{3}{1}}{\binom{7}{3}} = \frac{18}{35}$$

Example2 – Answer (6/9)

$$f(3) = P(X = 3) = \frac{\binom{4}{3}\binom{3}{0}}{\binom{7}{3}} = \frac{4}{35}$$

Example2 – Answer (7/9)

X	0	1	2	3
f(x) = P(X = x)	1/35	12/35	18/35	4/35

Mean and Variance (8/15)

Example2 – Answer (8/9)

Find the expected value of the number of good components in this sample.

x	0	1	2	3
f(x) = P(X = x)	1/35	12/35	18/35	4/35

$$E(X) = (0)\left(\frac{1}{35}\right) + (1)\left(\frac{12}{35}\right) + (2)\left(\frac{18}{35}\right) + (3)\left(\frac{4}{35}\right) = \frac{12}{7} = 1.7.$$

Mean and Variance (8/15)

Example2 – Answer (9/9)

$$E(X) = 1.7$$

Determine the variance of the random variable *X*

x
 0
 1
 2
 3

$$f(x) = P(X = x)$$
 1/35
 12/35
 18/35
 4/35

$$V(X) = E(X^{2}) - (E(X))^{2}$$

$$E(X^{2}) = \sum x_{i}^{2} P(x_{i}) = \mathbf{0} \left(\frac{1}{35}\right) + (\mathbf{1}) \left(\frac{12}{35}\right) + (4) \left(\frac{18}{35}\right) + (9) \left(\frac{4}{35}\right) = \frac{120}{35} = 3.43$$

$$V(X) = 3.43 - (1.7)^{2} = 0.54, \quad \text{Standard Deviation} \ (\sigma) = \sqrt{0.54} = 0.74$$

Mean and Variance (9/15)

For any constants *a* and *b*:

Mean

- 1. E(a) = a, $a \in \mathbb{R}$
- 2. E(aX + b) = aE(X) + b, $a, b \in \mathbb{R}$

Variance

- 1. V(a) = 0, $a \in \mathbb{R}$
- 2. $V(aX + b) = a^2 V(X)$, $a, b \in \mathbb{R}$

Mean and Variance (10/15)

Example3:

A discrete random variable with V(X) = 2.5Evaluate V(2X + 1)

Mean and Variance (11/15)

Example3 – Answer

A discrete random variable with V(X) = 2.5Evaluate V(2X + 1)

$$V(aX+b) = a^2 V(X), \qquad a, b \in \mathbb{R}$$

 $V(2X + 1) = 4V(X) = 4 \times 2.5 = 10$

Mean and Variance (12/15)

Example4:

A discrete random variable with E(X) = 2.5Evaluate E(2X + 1)

Mean and Variance (13/15)

Example4 – Answer

A discrete random variable with E(X) = 2.5Evaluate E(2X + 1)

$$E(aX+b) = aE(X) + b, \qquad a,b \in \mathbb{R}$$

$$E(2X + 1) = 2E(X) + 1$$
$$E(2X + 1) = 2 \times 2.5 + 1 = 6$$

Mean and Variance (14/15)

Example5:

Let *X* is a random variable with mean 6 and variance 100. Consider another random variable *Y* such that Y = 3X + 6, evaluate the mean and variance of *Y*?

Mean and Variance (15/15)

Example5 – Answer

Let *X* is a random variable with mean 6 and variance 100. Consider another random variable *Y* such that Y = 3X + 6, evaluate the mean and variance of *Y*?

E(X) = 6 , V(X) = 100E(Y) = E(3X + 6)V(Y) = V(3X + 6)

Example5 – Answer

Let *X* is a random variable with mean 6 and variance 100. Consider another random variable *Y* such that Y = 3X + 6, evaluate the mean and variance of *Y*?

$$E(X) = 6$$
, $V(X) = 100$
 $E(Y) = E(3X + 6) = 3E(X) + 6 = 3(6) + 6 = 24$
 $V(Y) = V(3X + 6) = 9V(X) = 9(100) = 900$

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGOs6gW9SgkmoxE5w9vQkID1_r-

Lecture #4:https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxlvc-MGDs6gW9SgkmoxE5w9vQkID1_r-&index=4Start from 00:41:39

Noteshttps://www.youtube.com/watch?v=F9f61KpLeRk&list=PLxlvc-Lec 1 - 4:MG0s6gW9SgkmoxE5w9vQkID1_r-&index=5

https://www.youtube.com/watch?v=8X8D2ONdSK4&list=PLxlvc-MGDs6gW9SgkmoxE5w9vQkID1_r-&index=6 Until the 00:36:40

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg