كلية الحاسبات والذكاء الإصطناعي

Probability and Statistics

Lecture 04

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Chapter 2: Random Variable

- Discrete Random Variables.
- Probability Mass Functions.
- Cumulative Distribution Functions.
- Discrete R.V. (Mean and Variance).
- Continuous Random Variables.
- Probability Density Functions.
- Continuous R.V. (Mean and Variance).
- Joint Probability Distributions.

Discrete Random Variables (1/3)

Random Variable

- Is a function that assigns a real number to each outcome in the sample space of random experiment. Denoted by an uppercase letter such as X

A Discrete Random Variable

- Is a random variable with a finite (or countable infinite) range.
- The possible values of X may be listed as x_{1}, x_{2}, \ldots

Discrete Random Variables (2/3)

كلية الحاسبات والذكاء الإصطناعي

Example1

- Flipping a coin of two times. Let X is the number of heads.

Discrete Random Variables (3/3)

Example1

- Flipping a coin of two times. Let X is the number of heads.

Answer:
$S=\{H H, H T, T H, T T\}$
$\begin{array}{llll}2 & 1 & 1 & 0\end{array}$
$x=0,1,2$
$P(0)=\frac{1}{4}$,
$P(1)=\frac{2}{4}$,
$P(2)=\frac{1}{4}$

Probability Mass Fun. (1/14)

Probability Mass Function

For a discrete random variable X with possible values $x_{1}, x_{2}, \ldots, x_{n}$, a probability mass function is a function such that
(1) $f\left(x_{i}\right) \geq 0$
(2) $\sum_{i=1}^{n} f\left(x_{i}\right)=1$
(3) $f\left(x_{i}\right)=P\left(X=x_{i}\right)$

x_{i}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$
$f\left(x_{i}\right)=P\left(x_{i}\right)$	$\boldsymbol{P}\left(\boldsymbol{x}_{1}\right)$	$\boldsymbol{P}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	$\boldsymbol{P}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{P}\left(\boldsymbol{x}_{\mathbf{4}}\right)$	$\boldsymbol{P}\left(\boldsymbol{x}_{\mathbf{5}}\right)$

Probability Mass Fun. (2/14)

Example1

Verify that the function is a probability mass function:

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Probability Mass Fun. (3/14)

Example1

Verify that the function is a probability mass function:

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Answer:
$\sum P\left(x_{i}\right)=1, \quad P\left(x_{i}\right) \geq 0$

Probability Mass Fun. (4/14)

Example2

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Find:
a. $\boldsymbol{P}(\boldsymbol{X} \leq 2)$
b. $\boldsymbol{P}(\boldsymbol{X}>-2)$
c. $P(-1 \leq X \leq 1)$
d. $\boldsymbol{P}(\boldsymbol{X} \leq-1$ or $\boldsymbol{X}=2)$

Probability Mass Fun. (5/14)

Example2

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Answer:

a. $\quad \boldsymbol{P}(\boldsymbol{X} \leq 2)=1$
b. $\quad \boldsymbol{P}(\boldsymbol{X}>-2)=\frac{7}{8}$
c. $\quad \boldsymbol{P}(-1 \leq X \leq 1)=\frac{6}{8}$
d. $\boldsymbol{P}(\boldsymbol{X} \leq-1$ or $\boldsymbol{X}=2)=\frac{3}{8}+\frac{1}{8}=\frac{4}{8}$

Probability Mass Fun. (6/14)

Example3

Two balls are drawn in succession without replacement from a box containing 4 red balls and 3 black balls. The possible outcomes and the values y of the random variable Y, where y is the number of red balls, are

Probability Mass Fun. (7/14)

Example3

Sample Space	\boldsymbol{y}
$R R$	2
$R B$	1
$B R$	1
$B B$	0

$f(0)=P(Y=0)=\frac{\binom{4}{0}\binom{3}{2}}{\binom{7}{2}}=\frac{3}{21}=\frac{1}{7}$

Probability Mass Fun. (7/14)

Example3

Sample Space	\boldsymbol{y}
$R R$	2

One Red Ball
$(1)=P(Y=1)=\frac{\binom{4}{1}\binom{3}{1}}{\binom{7}{2}}=\frac{12}{21}=\frac{4}{7}$

Probability Mass Fun. (7/14)

Example3	Sample Space	\boldsymbol{y}
Two Red Balls	$R R$	2
	$R B$	1
	$B R$	1
	$B B$	0

$f(2)=P(Y=2)=\frac{\binom{4}{2}\binom{3}{0}}{\binom{7}{2}}=\frac{6}{21}=\frac{2}{7}$

Probability Mass Fun. (7/14)

Example3

y	0	1	2
$f(y)=P(Y=y)$	$1 / 7$	$4 / 7$	$2 / 7$

Probability Mass Fun. (8/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

Note: Let X be a random variable whose values x are the possible numbers of defective computers purchased by the school.

Probability Mass Fun. (8/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

Note: Let X be a random variable whose values x are the possible numbers of defective computers purchased by the school. Then \boldsymbol{x} can only take the numbers 0,1 , and 2.

Probability Mass Fun. (9/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.
$f(0)=P(X=0)=\frac{\binom{3}{0}\binom{17}{2}}{\binom{20}{2}}=\frac{136}{190}$

Probability Mass Fun. (10/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.
$f(1)=P(X=1)=\frac{\binom{3}{1}\binom{17}{1}}{\binom{20}{2}}=\frac{51}{190}$

Probability Mass Fun. (11/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.
$f(2)=P(X=2)=\frac{\binom{3}{2}\binom{17}{0}}{\binom{20}{2}}=\frac{3}{190}$

Probability Mass Fun. (12/14)

Example4

A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

x	0	1	2
$f(x)=P(X=x)$	$136 / 190$	$51 / 190$	$3 / 190$

Probability Mass Fun. (13/14)

Example5

There is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0,1,2,3,4\}$.

Suppose that the probabilities are

$$
\begin{array}{ll}
P(X=0)=0.6561 & P(X=1)=0.2916 \\
P(X=2)=0.0486 & P(X=3)=0.0036 \\
P(X=4)=0.0001 &
\end{array}
$$

Probability Mass Fun. (14/14)

Example5 $\quad P(X=0)=0.6561 \quad P(X=1)=0.2916$

$$
\begin{aligned}
& P(X=2)=0.0486 \quad P(X=3)=0.0036 \\
& P(X=4)=0.0001
\end{aligned}
$$

Cumulative Distribution (1/9)

The cumulative distribution function (cdf), denoted by $F(x)$, measures the probability that the random variable X assumes a value less than or equal to x, that is,

$$
F(x)=P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

Cumulative Distribution (2/9)

If X is discrete, then

$$
F(x)=P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

x	-2	-1	0	1	2
$f(x)=P(X=x)$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Cumulative Distribution (3/9)

If X is discrete, then

$$
F(x)=P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

x	-2	-1	0	1	2
$f(x)=P(X=x)$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$
$\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{x})$	$\mathbf{1 / 8}$	$\mathbf{3 / 8}$	$\mathbf{5} / \mathbf{8}$	$\mathbf{7 / 8}$	$\mathbf{8 / 8}$

Cumulative Distribution (4/9)

$$
\text { Example1 } \begin{array}{ll}
P(X=0)=0.6561 & P(X=1)=0.2916 \\
P(X=2)=0.0486 & P(X=3)=0.0036 \\
P(X=4)=0.0001 &
\end{array}
$$

x	0	1	2	3	4
$f(x)=P(X=x)$	0.6561	0.2916	0.0486	0.0036	0.0001

Cumulative Distribution (5/9)

$$
\text { Example1 } \begin{array}{ll}
P(X=0)=0.6561 & P(X=1)=0.2916 \\
P(X=2)=0.0486 & P(X=3)=0.0036 \\
P(X=4)=0.0001 &
\end{array}
$$

x	0	1	2	3	4
$f(x)=P(X=x)$	0.6561	0.2916	0.0486	0.0036	0.0001
$\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{x})$	$\mathbf{0 . 6 5 6 1}$	$\mathbf{0 . 9 4 7 7}$	$\mathbf{0 . 9 9 6 3}$	$\mathbf{0 . 9 9 9 9}$	$\mathbf{1}$

Cumulative Distribution (6/9)

كلية الحاسبات والذكاء الإصطناعي

Example1

x	0	1	2	3	4
$f(x)=P(X=x)$	0.6561	0.2916	0.0486	0.0036	0.0001
$\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{x})$	$\mathbf{0 . 6 5 6 1}$	$\mathbf{0 . 9 4 7 7}$	$\mathbf{0 . 9 9 6 3}$	$\mathbf{0 . 9 9 9 9}$	$\mathbf{1}$

$$
F(x)= \begin{cases}0 & x<0 \\ 0.6561 & 0 \leq x<1 \\ 0.9477 & 1 \leq x<2 \\ 0.9963 & 2 \leq x<3 \\ 0.9999 & 3 \leq x<4 \\ 1 & 4 \leq x\end{cases}
$$

Cumulative Distribution (7/9)

Example2

x	0	1	2	3	4
$f(x)=P(X=x)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

Probability mass function plot.

Cumulative Distribution (8/9)

Example2

x	0	1	2	3	4
$f(x)=P(X=x)$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$
$\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X} \leq \boldsymbol{x})$	$\mathbf{1 / 1 6}$	$\mathbf{5 / 1 6}$	$\mathbf{1 1 / 1 6}$	$\mathbf{1 5 / 1 6}$	$\mathbf{1 6 / 1 6}$

Cumulative Distribution (9/9)

Example2

Discrete cumulative distribution function.

Mean and Variance (1/15)

Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and the variance is a measure of the dispersion, or variability in the distribution.

Mean and Variance (2/15)

Probability distributions with equal means but different variances.

Mean and Variance (3/15)

Two probability distributions can differ even though they have identical means and variances.

0

Mean and Variance (4/15)

كلية الحاسبات والذكاء الإصطناعي

Mean, Variance, and Standard deviation

The mean or expected value of the discrete random variable X, denoted as μ or $E(X)$, is

$$
\mu=E(X)=\sum_{x} x f(x)
$$

The variance of X, denoted as σ^{2} or $V(X)$, is

$$
\begin{array}{ll}
\sigma^{2}=V(X)=E(X-\mu)^{2}=\sum_{x}(x-\mu)^{2} f(x)=\sum_{x} x^{2} f(x)-\mu^{2} \\
\text { dard deviation of } X \text { is } \sigma=\sqrt{\sigma^{2}} . & E\left(X^{2}\right)-(E(X))^{2}
\end{array}
$$

Mean and Variance (5/15)

Example1

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Find:
Determine the mean and variance of the random variable X

Mean and Variance (6/15)

Example1

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Find:
Determine the mean and variance of the random variable X
Answer: (1/2)
$E(X)=$
$\sum x_{i} P\left(x_{i}\right)=(-2)\left(\frac{1}{8}\right)+(-1)\left(\frac{2}{8}\right)+(0)\left(\frac{2}{8}\right)+(1)\left(\frac{2}{8}\right)+(2)\left(\frac{1}{8}\right)$
$=0$

Mean and Variance (6/15)

Example1

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

Answer: (2/2)
$V(X)=E\left(X^{2}\right)-(E(X))^{2}$
$E(X)=0$
$E\left(X^{2}\right)$
$=\sum x_{i}^{2} P\left(x_{i}\right)=(4)\left(\frac{1}{8}\right)+(1)\left(\frac{\mathbf{2}}{8}\right)+(0)\left(\frac{\mathbf{2}}{8}\right)+(1)\left(\frac{\mathbf{2}}{8}\right)+(4)\left(\frac{1}{8}\right)=1.5$
$V(X)=1.5-(0)^{2}=1.5, \quad$ Standard Deviation $(\sigma)=\sqrt{1.5}$

Mean and Variance (7/15)

Example2:

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Mean and Variance (8/15)

Example2 - Answer (1/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Let X represent the number of good components in the sample. Then \boldsymbol{x} can only take the numbers $0,1,2$ and 3.

Mean and Variance (8/15)

Example2 - Answer (2/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

The probability distribution of X is

$$
f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{(7)}, \quad x=0,1,2,3
$$

Mean and Variance (8/15)

Example2 - Answer (3/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.
$f(0)=P(X=0)=\frac{\binom{4}{0}\binom{3}{3}}{\binom{7}{3}}=\frac{1}{35}$

Mean and Variance (8/15)

Example2 - Answer (4/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.
$f(1)=P(X=1)=\frac{\binom{4}{1}\binom{3}{2}}{\binom{7}{3}}=\frac{12}{35}$

Mean and Variance (8/15)

Example2 - Answer (5/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.
$f(2)=P(X=2)=\frac{\binom{4}{2}\binom{3}{1}}{\binom{7}{3}}=\frac{18}{35}$

Mean and Variance (8/15)

Example2 - Answer (6/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.
$f(3)=P(X=3)=\frac{\binom{4}{3}\binom{3}{0}}{\binom{7}{3}}=\frac{4}{35}$

Mean and Variance (8/15)

Example2 - Answer (7/9)

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

x	0	1	2	3
$f(x)=P(X=x)$	$1 / 35$	$12 / 35$	$18 / 35$	$4 / 35$

Mean and Variance (8/15)

Example2 - Answer (8/9)

Find the expected value of the number of good components in this sample.

x	0	1	2	3
$f(x)=P(X=x)$	$1 / 35$	$12 / 35$	$18 / 35$	$4 / 35$

$$
E(X)=(0)\left(\frac{1}{35}\right)+(1)\left(\frac{12}{35}\right)+(2)\left(\frac{18}{35}\right)+(3)\left(\frac{4}{35}\right)=\frac{12}{7}=1.7 .
$$

Mean and Variance (8/15)

Example2 - Answer (9/9)

$$
E(X)=1.7
$$

Determine the variance of the random variable X

x	0	1	2	3
$f(x)=P(X=x)$	$1 / 35$	$12 / 35$	$18 / 35$	$4 / 35$

$V(X)=E\left(X^{2}\right)-(E(X))^{2}$
$E\left(X^{2}\right)=\sum x_{i}^{2} P\left(x_{i}\right)=0\left(\frac{1}{35}\right)+(1)\left(\frac{12}{35}\right)+(4)\left(\frac{18}{35}\right)+(9)\left(\frac{4}{35}\right)=\frac{120}{35}=3.43$
$V(X)=3.43-(1.7)^{2}=0.54, \quad$ Standard Deviation $(\sigma)=\sqrt{0.54}=0.74$

Mean and Variance (9/15)

For any constants a and b :

Mean

1. $E(a)=a, \quad a \in \mathbb{R}$
2. $E(a X+b)=a E(X)+b, \quad a, b \in \mathbb{R}$

Variance

1. $V(a)=0, a \in \mathbb{R}$
2. $V(a X+b)=a^{2} V(X), \quad a, b \in \mathbb{R}$

Mean and Variance (10/15)

Example3:

A discrete random variable with $V(X)=2.5$
Evaluate $V(2 X+1)$

Mean and Variance (11/15)

Example3 - Answer

A discrete random variable with $V(X)=2.5$
Evaluate $V(2 X+1)$

$$
\begin{aligned}
& V(a X+b)=a^{2} V(X), \quad a, b \in \mathbb{R} \\
& V(2 X+1)=4 V(X)=4 \times 2.5=10
\end{aligned}
$$

Mean and Variance (12/15)

Example4:

A discrete random variable with $E(X)=2.5$
Evaluate $E(2 X+1)$

Mean and Variance (13/15)

Example4 - Answer

A discrete random variable with $E(X)=2.5$
Evaluate $E(2 X+1)$
$E(a X+b)=a E(X)+b, \quad a, b \in \mathbb{R}$
$E(2 X+1)=2 E(X)+1$
$E(2 X+1)=2 \times 2.5+1=6$

Mean and Variance (14/15)

Example5:

Let X is a random variable with mean 6 and variance 100 . Consider another random variable Y such that $Y=3 X+6$, evaluate the mean and variance of Y ?

Mean and Variance (15/15)

Example5 - Answer

Let X is a random variable with mean 6 and variance 100 . Consider another random variable Y such that $Y=3 X+6$, evaluate the mean and variance of Y ?

$$
E(X)=6 \quad, \quad V(X)=100
$$

$E(Y)=E(3 X+6)$
$V(Y)=V(3 X+6)$

Mean and Variance (15/15)

Example5 - Answer

Let X is a random variable with mean 6 and variance 100 . Consider another random variable Y such that $Y=3 X+6$, evaluate the mean and variance of Y ?

$$
E(X)=6 \quad, \quad V(X)=100
$$

$$
E(Y)=E(3 X+6)=3 E(X)+6=3(6)+6=24
$$

$$
V(Y)=V(3 X+6)=9 V(X)=9(100)=900
$$

Video Lectures

```
كلية الحاسبات والذكاء الإصطناعي
```

All Lectures: hitps://www.youtube.com/playlist?list=PLx|vc-MEDsGgWgSgkmaxESwIvDkIDI r-

Lecture \#4: https://www.youtube.com/watch?v=zWDzNUTfkSs\&list=PLxlvcMEDsEgWISgkmaxE5wIvLkIDI r-Cindex=4

Notes https://www.youtube.com/watch?v=F9fGiKpLeRKdlist=PLx|vc-
Lec 1-4: MEDsGgWSSgkmaxE5wIvDkIDI r-Sindex=5
https://www.youtube.com/watch?v=8X8D2CNdSK4Slist=PLxlvcMEDsEgWISgkmaxE5wIvDKIDI r-Cindex=6

Until the 00:36:40

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

