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• Discrete Random Variables.

• Probability Mass Functions.

• Cumulative Distribution Functions.

• Discrete R.V. (Mean and Variance).

• Continuous Random Variables.

• Probability Density Functions.

• Continuous R.V. (Mean and Variance).

• Joint Probability Distributions.
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Chapter 2: Random Variable

Probability and Statistics
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Discrete Random Variables (1/3)

Random Variable

• Is a function that assigns a real number to each outcome 

in the sample space of random experiment. Denoted by 

an uppercase letter such as X

A Discrete Random Variable

• Is a random variable with a finite (or countable infinite) 

range.

• The possible values of X may be listed as 𝑥1, 𝑥2, . . .

Probability and Statistics
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Example1

• Flipping a coin of two times. Let 𝑋 is the number of 

heads. 

Probability and Statistics

Discrete Random Variables (2/3)
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Example1

• Flipping a coin of two times. Let 𝑋 is the number of 

heads. 

Answer:

𝑆 = 𝐻𝐻,𝐻𝑇, 𝑇𝐻, 𝑇𝑇

𝑥 = 0, 1, 2

𝑃 0 =
1

4
, 𝑃 1 =

2

4
, 𝑃 2 =

1

4

𝟐 𝟏 𝟏 𝟎

Probability and Statistics

Discrete Random Variables (3/3)
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Probability Mass Fun. (1/14)

Probability Mass Function

𝑥𝑖 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

𝑓 𝑥𝑖 = 𝑃(𝑥𝑖) 𝑷 𝒙𝟏 𝑷 𝒙𝟐 𝑷 𝒙𝟑 𝑷 𝒙𝟒 𝑷 𝒙𝟓

Probability and Statistics
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Example1

Verify that the function is a probability mass function:

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Probability Mass Fun. (2/14)
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Example1

Verify that the function is a probability mass function:

Answer:

𝑷 𝒙𝒊 = 𝟏 , 𝑷 𝒙𝒊 ≥ 𝟎

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Probability Mass Fun. (3/14)
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Example2

Find:

a. 𝑷 𝑿 ≤ 2 b. 𝑷 𝑿 > −2

c. 𝑷 −1 ≤ 𝑿 ≤ 1 d. 𝑷 𝑿 ≤ −1 or 𝑿 = 2

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Probability Mass Fun. (4/14)
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Example2

Answer:

a. 𝑷 𝑿 ≤ 2 = 1

b. 𝑷 𝑿 > −2 =
7

8

c. 𝑷 −1 ≤ 𝑿 ≤ 1 =
6

8

d. 𝑷 𝑿 ≤ −1 or 𝑿 = 2 =
3

8
+

1

8
=

4

8

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Probability Mass Fun. (5/14)
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Example3

Two balls are drawn in succession without replacement 

from a box containing 4 red balls and 3 black balls. The 

possible outcomes and the values 𝑦 of the random variable 

𝑌 , where 𝑦 is the number of red balls, are

Probability and Statistics

Probability Mass Fun. (6/14)
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Example3

Probability and Statistics

Probability Mass Fun. (7/14)

𝑓 0 = 𝑃 𝑌 = 0 =

4
0

3
2

7
2

=
3

21
=
1

7

No Red Balls
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Example3

Probability and Statistics

Probability Mass Fun. (7/14)

𝑓 1 = 𝑃 𝑌 = 1 =

4
1

3
1

7
2

=
12

21
=
4

7

One Red Ball
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Example3

Probability and Statistics

Probability Mass Fun. (7/14)

𝑓 2 = 𝑃 𝑌 = 2 =

4
2

3
0

7
2

=
6

21
=
2

7

Two Red Balls
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Example3

𝑦 0 1 2

𝑓 𝑦 = 𝑃(𝑌 = 𝑦) 1/7 4/7 2/7

Probability and Statistics

Probability Mass Fun. (7/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

Note: Let 𝑋 be a random variable whose values 𝑥 are the 

possible numbers of defective computers purchased by the 

school.

Probability and Statistics

Probability Mass Fun. (8/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

Note: Let 𝑋 be a random variable whose values 𝑥 are the 

possible numbers of defective computers purchased by the 

school. Then 𝒙 can only take the numbers 0, 1, and 2.

Probability and Statistics

Probability Mass Fun. (8/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

𝑓 0 = 𝑃 𝑋 = 0 =

3
0

17
2

20
2

=
136

190

Probability and Statistics

Probability Mass Fun. (9/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

𝑓 1 = 𝑃 𝑋 = 1 =

3
1

17
1

20
2

=
51

190

Probability and Statistics

Probability Mass Fun. (10/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

𝑓 2 = 𝑃 𝑋 = 2 =

3
2

17
0

20
2

=
3

190

Probability and Statistics

Probability Mass Fun. (11/14)
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Example4

A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random 

purchase of 2 of these computers, find the probability 

distribution for the number of defectives.

Probability and Statistics

Probability Mass Fun. (12/14)

𝑥 0 1 2

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 136/190 51/190 3/190
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Example5

There is a chance that a bit transmitted through a digital 

transmission channel is received in error. Let 𝑋 equal the 

number of bits in error in the next four bits transmitted. The 

possible values for 𝑋 are {0, 1, 2, 3, 4}.

Suppose that the probabilities are

Probability and Statistics

Probability Mass Fun. (13/14)
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Example5

Probability and Statistics

Probability Mass Fun. (14/14)
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The cumulative distribution function (cdf), denoted by 

𝐹(𝑥), measures the probability that the random variable 𝑋
assumes a value less than or equal to 𝑥, that is, 

Cumulative Distribution (1/9)
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If 𝑋 is discrete, then

𝑥 -2 -1 0 1 2

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/8 2/8 2/8 2/8 1/8

Cumulative Distribution (2/9)
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If 𝑋 is discrete, then

𝑥 -2 -1 0 1 2

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/8 2/8 2/8 2/8 1/8

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 1/8 3/8 5/8 7/8 8/8

Cumulative Distribution (3/9)
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Example1

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 0.6561 0.2916 0.0486 0.0036 0.0001

Cumulative Distribution (4/9)
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Example1

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 0.6561 0.2916 0.0486 0.0036 0.0001

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 0.6561 0.9477 0.9963 0.9999 1

Cumulative Distribution (5/9)
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Example1

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 0.6561 0.2916 0.0486 0.0036 0.0001

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 0.6561 0.9477 0.9963 0.9999 1

Cumulative Distribution (6/9)
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Example2

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/16 4/16 6/16 4/16 1/16

Cumulative Distribution (7/9)
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Example2

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/16 4/16 6/16 4/16 1/16

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 1/16 5/16 11/16 15/16 16/16

Cumulative Distribution (8/9)
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Example2

Probability and Statistics

𝑥 0 1 2 3 4

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/16 4/16 6/16 4/16 1/16

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 1/16 5/16 11/16 15/16 16/16

Cumulative Distribution (9/9)
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Two numbers are often used to summarize a probability 

distribution for a random variable X. The mean is a 

measure of the center or middle of the probability 

distribution, and the variance is a measure of the 

dispersion, or variability in the distribution.

Mean and Variance (1/15)
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Mean and Variance (2/15)

Probability distributions with equal 

means but different variances.
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Mean and Variance (3/15)

Two probability distributions can 

differ even though they have 

identical means and variances.
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Mean and Variance (4/15)

Mean, Variance, and Standard deviation

𝐸 𝑋2 − 𝐸 𝑋
2

Probability and Statistics
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Example1

Find:

Determine the mean and variance of the random variable 𝑋

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Mean and Variance (5/15)
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Example1

Find:

Determine the mean and variance of the random variable 𝑋

Answer:  (1/2)

𝐸 𝑋 =

𝒙𝒊𝑷 𝒙𝒊 = −𝟐
𝟏

𝟖
+ −𝟏

𝟐

𝟖
+ 𝟎

𝟐

𝟖
+ 𝟏

𝟐

𝟖
+ 𝟐

𝟏

𝟖

= 0

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Mean and Variance (6/15)
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Example1

Answer:  (2/2)

𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋
2

𝐸 𝑋 = 0

𝐸 𝑋2

=𝒙𝒊
𝟐𝑷 𝒙𝒊 = 𝟒

𝟏

𝟖
+ 𝟏

𝟐

𝟖
+ 𝟎

𝟐

𝟖
+ 𝟏

𝟐

𝟖
+ 𝟒

𝟏

𝟖
= 𝟏. 𝟓

𝑉 𝑋 = 1.5 − 0 2 = 1.5, Standard Deviation (𝜎) = 1.5

𝒙 -2 -1 0 1 2

𝒇 𝒙 = 𝑷(𝑿 = 𝒙) 1/8 2/8 2/8 2/8 1/8

Probability and Statistics

Mean and Variance (6/15)
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Example2:

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

Mean and Variance (7/15)
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Example2 – Answer (1/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

Let X represent the number of good components in the 

sample. Then 𝒙 can only take the numbers 0, 1, 2 and 3.

Mean and Variance (8/15)
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Example2 – Answer (2/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

The probability distribution of X is

Mean and Variance (8/15)
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Example2 – Answer (3/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

𝑓 0 = 𝑃 𝑋 = 0 =

4
0

3
3

7
3

=
1

35

Mean and Variance (8/15)
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Example2 – Answer (4/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

𝑓 1 = 𝑃 𝑋 = 1 =

4
1

3
2

7
3

=
12

35

Mean and Variance (8/15)
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Example2 – Answer (5/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

𝑓 2 = 𝑃 𝑋 = 2 =

4
2

3
1

7
3

=
18

35

Mean and Variance (8/15)
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Example2 – Answer (6/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

𝑓 3 = 𝑃 𝑋 = 3 =

4
3

3
0

7
3

=
4

35

Mean and Variance (8/15)
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Example2 – Answer (7/9)

A lot containing 7 components is sampled by a quality 

inspector; the lot contains 4 good components and 3 

defective components. A sample of 3 is taken by the 

inspector. Find the expected value of the number of good 

components in this sample.

Mean and Variance (8/15)

𝑥 0 1 2 3

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/35 12/35 18/35 4/35
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Example2 – Answer (8/9)

Find the expected value of the number of good components
in this sample.

Mean and Variance (8/15)

𝑥 0 1 2 3

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/35 12/35 18/35 4/35
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Example2 – Answer (9/9)

Determine the variance of the random variable 𝑋

Mean and Variance (8/15)

𝑥 0 1 2 3

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 1/35 12/35 18/35 4/35

𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋
2

𝐸 𝑋2 = 𝒙𝒊
𝟐𝑷 𝒙𝒊 = 𝟎

𝟏

𝟑𝟓
+ 𝟏

𝟏𝟐

𝟑𝟓
+ 𝟒

𝟏𝟖

𝟑𝟓
+ 𝟗

𝟒

𝟑𝟓
=
𝟏𝟐𝟎

𝟑𝟓
= 𝟑. 𝟒𝟑

𝑉 𝑋 = 3.43 − 1.7 2 = 0.54, Standard Deviation 𝜎 = 0.54 = 0.74
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For any constants a and b:

Mean

1. 𝐸 𝑎 = 𝑎 , 𝑎 ∈ ℝ

2. 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 , 𝑎, 𝑏 ∈ ℝ

Variance

1. 𝑉 𝑎 = 0 , 𝑎 ∈ ℝ

2. 𝑉 𝑎𝑋 + 𝑏 = 𝑎2𝑉 𝑋 , 𝑎, 𝑏 ∈ ℝ

Mean and Variance (9/15)
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Example3:

A discrete random variable with 𝑉 𝑋 = 2.5
Evaluate 𝑉(2𝑋 + 1)

Mean and Variance (10/15)
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Example3 – Answer

A discrete random variable with 𝑉 𝑋 = 2.5
Evaluate 𝑉(2𝑋 + 1)

𝑉 𝑎𝑋 + 𝑏 = 𝑎2𝑉 𝑋 , 𝑎, 𝑏 ∈ ℝ

𝑉 2𝑋 + 1 = 4𝑉 𝑋 = 4 × 2.5 = 10

Mean and Variance (11/15)
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Example4:

A discrete random variable with 𝐸 𝑋 = 2.5
Evaluate 𝐸 2𝑋 + 1

Mean and Variance (12/15)
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Example4 – Answer

A discrete random variable with 𝐸 𝑋 = 2.5
Evaluate 𝐸 2𝑋 + 1

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 , 𝑎, 𝑏 ∈ ℝ

𝐸 2𝑋 + 1 = 2𝐸 𝑋 + 1

𝐸 2𝑋 + 1 = 2 × 2.5 + 1 = 6

Mean and Variance (13/15)
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Example5:

Let 𝑋 is a random variable with mean 6 and variance 100.
Consider another random variable 𝑌 such that
𝑌 = 3𝑋 + 6, evaluate the mean and variance of 𝑌?

Mean and Variance (14/15)
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Example5 – Answer

Let 𝑋 is a random variable with mean 6 and variance 100.
Consider another random variable 𝑌 such that
𝑌 = 3𝑋 + 6, evaluate the mean and variance of 𝑌?

𝐸 𝑋 = 6 ,   𝑉 𝑋 = 100

𝐸 𝑌 = 𝐸 3𝑋 + 6

𝑉 𝑌 = 𝑉 3𝑋 + 6

Mean and Variance (15/15)
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Example5 – Answer

Let 𝑋 is a random variable with mean 6 and variance 100.
Consider another random variable 𝑌 such that
𝑌 = 3𝑋 + 6, evaluate the mean and variance of 𝑌?

𝐸 𝑋 = 6 ,   𝑉 𝑋 = 100

𝐸 𝑌 = 𝐸 3𝑋 + 6 = 3𝐸 𝑋 + 6 = 3 6 + 6 = 24

𝑉 𝑌 = 𝑉 3𝑋 + 6 = 9𝑉 𝑋 = 9 100 = 900

Mean and Variance (15/15)



Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-All Lectures: 

Lecture #4:  https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-

MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4

58© Ahmed Hagag Probability and Statistics

https://www.youtube.com/watch?v=F9f61KpLeRk&list=PLxIvc-

MGOs6gW9SgkmoxE5w9vQkID1_r-&index=5

Notes

Lec 1 – 4:  

Start from 00:41:39

https://www.youtube.com/watch?v=8X8D20NdSK4&list=PLxIvc-

MGOs6gW9SgkmoxE5w9vQkID1_r-&index=6 Until the 00:36:40

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-
https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4
https://www.youtube.com/watch?v=zWDzNUTfk9s&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=4
https://www.youtube.com/watch?v=F9f61KpLeRk&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=5
https://www.youtube.com/watch?v=F9f61KpLeRk&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=5
https://www.youtube.com/watch?v=8X8D20NdSK4&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=6
https://www.youtube.com/watch?v=8X8D20NdSK4&list=PLxIvc-MGOs6gW9SgkmoxE5w9vQkID1_r-&index=6


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg
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